
Unclassified EIf(JW~II
ZJRITY CLASSIFICATION OF THIS PAGE (Wfheln Does F.nfierd)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 12. • VT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

ARO 19979.3-EG

4. .TITLE (and Subiitle) S. TYPE OF REPORT & PERI• O COVFRED
Final Report

A Study of Singularities in Boundary-Fitted Fn Repor 8
Coodinte ystms16 Aug 83 - 15 Aug 85Coordinate Systems

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(*)

Helen V. McConnaughey DAAG29-83-K-0101

I. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA 4 WORK UNIT NUMBERS

Mississippi State. Univ. N/A
Mississippi State, MS 39762

L I,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATEU. S. Army Research Office October 9, 1985

Post Office Box 12211 13. NUMBER Of PAGES
Research Triangle Park, NC 27709 42

14. MONITORING AGENCY NAME 0 ACORESS(I! dlfferent trom Controllng Offlce) IS. SECURITY CLASS. (o0 thie rePort)CD
Unclssi fiedIS*. OECLASSIFICATiON/DOWNGRADING

SCHEDULE

1S DISTRIUUTICHN STATEMENT (of this Report)

<Approved for public release; distribution unlimited.

17. OISTRIBUTION STATEMENT (of the ebstract entered In Block 20, It dlfferent from Report)

IIII. SUPPLEMENTARY'NOTES

4 The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
"position, .)olicy, or decision, unless so designated by other documentation

1P. KEY WORDS (Continue on revre* side if necessary and Identify by block nu.ber)

Coordinate Systems Two-Dimensional Configurations
SBoundary-Fitted Coordinate Systems Three-Dimensional Grids

Subsystems. Grid Structures

20. ANST-RACT (X'oC r - trev .*f if ne wr and Ideotify by block numWber)

Studies have indicated that special points encountered in a

0 finite-difference approach must be individually examined before a

00
dL 4) suitable treatment of each can be identified. 'In a finite-volume
U,! formulation, however, the same treatment applios to all wecia cells.

DD F 1473 r!DloorNO ov65 IS OSOLIET E



Final Report

ARý" Contract No. DAAG 29-83-K-0101

A STUDY OF SINGULARITIES IN

BOUNDARY-FITTED COORDINATE SYSTEMS

by

Dr. Helen V. McConnaughey AQ

Department otf Mathematics oi!

Mississippi State University

Mississippi State, MS 39762

October 9, 1985

Jr. .. .... .................... .................... ....



REPRODUCTION QUALITY NOTICE

This document is the best quality available. The copy furnished
to DTIC contained pages that may have the following quality
problems:

* Pages smaller or larger than normal.

o Pages with background color or light colored printing.

* Pages with small type or poor printing; and or

* Pages with continuous tone material or color
photographs.

Due to various output media available these conditions may or
may not cause poor legibility in the microfiche or hardcopy output
you receive.

El If this block is checked, the copy furnished to DTIC
contained pages with color printing, that when reproduced in
Black and White, may change detail of the original copy.



I

TABLE OF CONTENTS

Introduction 1

Project Results 2

Conclusion

References 
5

Figures 6

Appendix I

Appendix 2

Acoession For

NTI.S GRA&I

DTIC TAB
JUStlficatlom•
Unannouncled

Distributoni/

A vailbi and/o r

rl ti

T T

{r
!4"." " -" "." "•"c"ation." -' " " • ] ".,-- ' -.. . . . . . . . .. . . . . . .



INTRODUCTION

Many problems in science and engineering require the solution of a

system of partial differential eyiations or a complex two- or

three-dimensional domain. In order to solve such a problem

numerically, a boundary-fitted coordinate system is usually

constructed. For geometries of practical importance, it' is often

necessary to partition the domain and to fit a separate coordinate

system to each subregion. Patching these subsystems together to form a

composite system can produce irregular grid structures where the

numerical scheme of solution must be modified.

Methuds for treating nonstandard ("special") grid points in

two-dimensional configurations were developed and reported earlier in

the course of this project. -See Ref.-- 1-3)'. Verification of these

methods through computer experimentation and extension of the methods'

to special points in three-dimensional grids Were the primary

objectives of the project reported here. 7- '
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PROJECT RESULTS

-"The same general approach used to develop and analyze methods for

treatment of special two-dimensional grid structures was applied-to

three-dimensional configurations. The characterization of specialI
points in three dimensions is a direct and straightforward extension of

that reported for two-dimensional geometries (Ref. 1). Ordinary

three-dimensional grid structures are depicted in Fig. 1 and 2. Such

structures may not exist at some boundary points or where two or more

subregions of a composite grid meet. Examples are shown in Fig. 3 and

4. These nonstandard grid structures require an adjustment of

"numerical solution schemes whicn are based on the usual grid-point

"orientation shown in Fig. I and 2.

"As in the case of two-dimensi6nal geometries, a finite-difference

scheme can be applied at a special point in three dimensions if the

scheme is rephrased in terms of a suitable local coordinate system.

This local system must have an ordinary structure (as in Fig. 1 or 2)

and should not be too stretched or skewed. The appropriate local

coordinate systems for the special points in Fig. 3 and 4 are

illustrated in Fig. 5 and 6. It should be noted that for some
S

configurations, a satisfactory local coordinate system may not exist.

"An, example is shown in Fig. 7. In such cases, a finite-vcl'ime aa- r P

must te used to approximate derivatives at the special point.

irregular grid structures can generally be treated in a simple and

straightforward manner when a finite-volume approach is used. Then, iu

is the configuration of grid cells which is at issue. Extension of th,

two-dimensional analysis of Ref. 1-3 shows a special cell in three
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dimensions to have other than six faces or a vertex common to other

than e4i-gt cell.. The latter type cf special cell requi•.eS special

attention only when a derivative ;nust be roresent-e. on a •e-•

In direct analogy to the approach for two dimtension detailed in4

Ref. 2 and 3.(attached herewith), special cells are treated by imposing

the integral form of the governring equations in physical coor-i.ates,

rat.er than in terhs of tne tranformed (curvilinear) cr Cn"s,
/

within the special volume element. Cell-centered values of the unknown

functions are sought. A derivative within the cell is approximated by

a .surface interal over the cell boundary whioh is equivalent to the

average of that derivative over the cell. In particular, identity (1)

is used:

7f I fd: f ndo, (1)
avg V J -

where V is the volume of cell D, dT is an incre!..ent of volume' -D is

.h..rface bounding cell D, and n is the unit outward normal to

sur: ace-ar••ea elemet do. The value of the unknown function, f, on a

3ci face is ecuated to an average of the function's values a31 t, '

:znters of t S' -ells, sharing that face. The value of a der ativ

e f g... ¾ , cn.... ssexat-•' e2 t the a"...... of tne de-n"i'ative 's

vI ies Tat the vertices of tnat --'i face. These ve er.ex va Ies ar1e

obtainec by ap-1'vL "r nt ,ty ( t-) a• n au x il y cell cn er.ed a e

vertex. The C..M.rso.e formulas for these exoressions in thr

dimensions are -,,mitted here, but they can ,? derived by d --ee V.

exterdind the formulas for *two-dimensional c-ells giver in Ref. 2.

3
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Figure '2
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Figure 5
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Figure 7

12



APPENDIX 1

Reference 2

Computational Problems on Composite Grids

by

C.W. Mastin and H.V. McConnaughey

AIAA Paper No. AIAA-84-1611

AIAA 17th Fluid and Plasma Dynamics Conference

Snowmass, Colorado, 1984



AIAA 17th Fluid and.Plasma Dynamics Conference, Snowmass, Colorado; June 1984

AIAA-84-1611
COMPUTATIONAL PROBLEMS
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Abstract I
Complex physical regions often necessitate lying along the sides of two subregions. However

the use of several rectangular computational the vertices present a problem whenever the
regions. The corresponding physical subregions Jacobian of the transformation is zero or is
may be joined along their boundary or overlapped, undefined. This same problem may also occur at
Techniques are described for the numerical boundary points of the physical region. One of
solution of partial differential equations on the objectives of this report is to classify the
either type of composite grid system. types of singular or unusual points which (nay

occur and indicate how to derive consistent
difference approximations at such points. The

Introduction second approach In working with composite grids
is to overlap the grids for the physical sub-

Problems in constructing a computational regions. In this case the solution values are
grid often arise due to the complex geometric transferred from the Interior points of one grid
configurations encountered in practical fluid to the boundary points of another grid by an
flow simulations. For example, anaircraft interpolation formula. Many different inter-
is cýýposed of many individual components such polation schemes are available and their effect
as fuselage,,wings, tail, fins, pylons, and on the error in the nuiTerical solution may be
nacelles. Although each component may be significant. Overlapping grids have-been gaining
geometrically simple, and a grid about the in- in popularity due to the Inherent freedom in
dividual components may be easy to construct, generating each subregion grid without considera-
constructing a grid about the complete con- tion of the remaining grids.
figuration is more difficult, Another example
in which complex regions are encountered may Computational techniques and comparative
be found by examining the design of current results on composite grids will be presented in
turbomachinery. The problem of constructing a the solution of simple two-dimensional model
grid is co':;ounded by the accuracy requiremcnts problemsi In the case where grid lines con-
of the numerical algorithm. In order to control tinue smoothiy between subregions, a finite-
the truncation errir of the algorithm, grid volume method is compared with an ADi scheme
points must be concentrated near boundary layers, using the usual finite-difference approximations.
shocks, and other regions where solution gradi- The first method illustrates the use of finite-
ents are large. It 'is thus apparent that volume formulations for solving partial differen-
where a boutdary-fitted curvilinear coordinate tial equations with second-order derivatives,
system is emplo:'ed in the solution of many while the second demonstrates an inipleentation
problems of practical interest, several rec- of ADI schemes on composite grids with singular
tangular computational regions .,ust be used. points. Solutions are also presented from com-
The grid which is defined by this merging of putations on overlapping grids. The questions
several coordinate systems is called a composite to be discussed there are: What effect does the
grid. interpolation procedure have onthe accuracy of

the numerical solution? How does the accuracy
Two' approaches have developed in construct- vary with the choice of the particular inter-

ing, composite grid systems. The first, and polation formula? Specifically, conparisons are
still the most popular, is to have the grid presented using bivariate Interpolation on

m lines nass smoothly from one s:4bregion into the quadrilaterals 3,4, Taylor polynomials 5, and the
A next. V,2 The well-kncwn chain rule formulas triangular interpoiation schemes co.-.only used

can be used to transform from' the physical to with finite element methods.
the computational variables at the interior
points of each subregion as well as at points .* Special Points In Continuous Grids

Field points which require special attention
_ _ _frequently arise when numerically solving fcw
*This work was supported by the Army Research problems on a composite curvilinear coordinate
Office under Grant DA.AG 29-83-K-0101 and by system consisting of continuously joined segments.
NASA Langley Research Center under Grant This is true whether the numerical method of
N• •SG-1S17. , solution involves a finite-volume formulation or
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a finite-difference scheme. The special points where the superscripts on f and Itsiderivatives
encountered in the two approaches are, however, indicate the point or face of evaluation.
different in nature, hence the two cases are
addressed separately in the following discussion. Simple forward/backward diferencing can Le

In a finite-volume scheme on a two-dimen- usd to aprSmt devle
sional composite grid, the unusual points which fS, fS X and f y when working on a grid whose

arise are centers of interior grid cells ,
having other than four edqeý or having a vertex interior is "rectangular" in nature in that

shared by other than four cells. Examples are right/left a nd up/down orien~tations can, be

illustrated below, followed through the grid In an unambiguous way.
Such a technique was used in the numerical ex-
ample discussed later. On a more general'grld,
an obvious way to approximate

fsIis to average the center values of the two

9 0 cells sharing edge si. This same averaging scheme
cannot be repeated to approximate
I si si

f X and' fSY , however, without rejecting the

customary strategy of avoiding use of values at

points which are not immnediate neighbors of the

The first type of cell can result when sub- 'point at which a quantity is being evaluated.

regions' of the segmented domain are joined I~nstead, we propose the averaging technique:

between grid lines; the second can occur when'1'
1  V'1

seg ments are joined along grid lines, but this ' V'
cell requires special care only when secondf Y +fX
derivatives are approximated therein. In1 yl y 1

either case, treatm~ent of the associated sI I v

"special points" consists simply of replacing fy Y (fy Y +fy '(3)

the usaal difference'representations associated
with four-sided cells having vertices conmmon
to three other cells by expressions derived for weetevre~ausaeot~e yapyn

a geeralN-sied cllidentity (1) to auxiliary cells fcr~ed by

Recall that a finite-voluw"' formulation joining the midpoints of the edges of each cell

solves for cell-centered function values and to the cell center. To make this more precise.

approximates derivatives at a cell center by let V be a vertex' common to Q cells ind label

line integrals about the cell boundary which the cell faces emranating from V-as kc with

are equivalent to avera es over the cell. In midpoints
particular, Identity (13 is used. Mii s( I. M I)i.-1 2 --,Q. Then. if P I

- di rf ds(1) (pt p) is, the center of the cell having' edges

J~ d J - fnd 1 P1I

00k
t and kOl and if f is~taken to equal f J ln~n

For an P1-sided cell of area A with cartesian M P1 and P1 4' M the first partial derivatives

Centrold PI (PI P'2 ) vertices Vi of, f at V may be apprciAllmated by

(v'v) i 1,2, .... N, ard edges s
joinivg Vi and V1+1 (VN+1 V I along which

a function f and its first partial derivatives
are constant, this approach gives V Iý f .~

fP -A-' fs 1+1 1 .11(4)
x(V 2  - v2  fVA'S Q I 1+

f P .A-14 5s vi~l v) (2)

Ax . 2 where A i's the area of the 2Q-faced auxiliary

P = ' cell M IP IM 2P
2 

... Nt4P%1 indicated in tne

fP A -f v Y following diagram.

112



V. The usual trarsforrr.ation relations applied to

3 the local coordinates (Q. ;) at a special point
3 P provide accurate difference approximations of

I M 2 k 3derivatives with respect to the physical variables
pQ. j there. This technique was applied to the special

. I .p boundary point shown In Figure 2 when the
1 lIV associated partial differential equation'was

k W2 numerically solved using a finite-differencek. scheme.

Overlapping Grids,

F Expressions (3), (43, ani the average When overTappliig grids are constructed,

k1  I(P i.-] I any boundary point of a comeponent grid G, which
.2 f) is not a physical boundary point, must lie in

a cell of some grid H. Reyardless of the differ-
make the-difference formulas In (2) reasonable ence equations or the algorithm used to solve
approximations of the first and stcond partial the difference equations, there must be a trans-
derivatives of a function f at the center of mission of information between the various grid
an arbitrary grid cell. Because this systems. Suppose that solution values on H are
technique is generally applicable, -he transmitted to the grid C by~a general inter-
finite-volume Poproach is deemed the most polation formula
"straight-for-.ard when special points are pres-
ent in the field. In the alternative finite- a

difference approach, It is found that special f(ro) a f~s (i)

points which arise must be individually ex- J-14 amined before a suitable treatment of each
can be identified. Thus no singte set of where r is a boundary point of G and the s. are
finite-difference formulas can always be points Rf H. At least some of the s. uist
applied to every such point independent of its be interior points of H and, de-endihg on the
context, as will now be discussed. algorithm, one may wish to require a sufficiently

large overlapping so that all the s, are interior
The special points which are encountered points. For example, the latter re~jire-ent

in a finite-difference formulation may be would eliminate pcssible stability proble's when
recognized as those grid points (cell vertices) solving parabolic equations. When the value
haesing a nonstandard number of Imm-ediate of f at rn is replaced in the difference
neighbors. On the boundary of a twý-dir.ensional equation at a neighboring point by t•e inter-
do.r-in, such points have other than five polated value, a new difference equation results
-neighbors but require special treat.'mnt only which will have a different local truncation
if Neumann ',runcary conditions are Imposed. error. it can be shown that a -sufficient
Ie;-;r grid points are "special" if they have condition for consis'te.icy in t? approximation

*.other than eight ir-.ediate neighbors. These of the first-order derivatives with res5ect
can occur on the interface between segments to the physical variables x and y is that
of a composite grid which are joined along
grid lines, or they Can be vertices of a cell

. intersected by an interface in the case of k k ksubreions joined tetween grid lines (see (6)
below.E a - I. E ajxj -xO, E ajyj Y 6

J-1 - J-1 J-o, '

S-i where x0 and y, denote the coordcnates of r., and
L ,jand y, denote the coordinates of s.. The

difference approximations will be second-order
accurate If in addition
k•. . 171 y

In all cases, the usual finite-difference 40 4. J ajXy j. 1

approach can be followed if the difference
for'ulas are rephrased in terms of suitable
local coordinates which Identify and label 6

S-the standard number of neighbors. Thompson
has described such local systems for special
boundary points; choices appropriate to
various interior special points are indicated
in Figure 1.
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/7. 71 7,

There is a loss of one order in the formal approrimate values of u and v have 'ee calcu.
accuracy of the second-order derivative lated, a biquadratic interpolant of the foilo-.ing

/ approximations, form is computed.

Several different interpolation scheres will 9
now be reviewed. The first scheme is based on f(r0  (u. VMS
the approxiration of a Taylor polynomial. For J u f
each boundary point r of G, fine the closestpoint sI of H. The v~iues of the function
foiat s fo n.Theihbrs ;f s e fHere q. is the biquadratic Lagrange interpolatlngf a t t h4 f o u r n e i g h b o r s o f s , s a y s , . . . . S 5 , p o j o ýý a w h i c .s u -e h v l e I a h
can be used to calculate approximations polyn,.,al which assuces the value I at the'of the first derivatives of the actual solution, point of the unit square which maps to s. and'These approximations can thus be substituted vanishes at the points which have other irid

for the derivatives 'in a linear Taylor polynomial points of Q as images. This interpolation for
at s. If the resulting interpolation formula mula satisfies both (6) and (7). Thus, irrprcved

is written in the form of (5), then the coef- results would be anticipated using b.quadratic
ficients will satisfy (6). If the original intepclation. It should be noted that the

algorithm is at least second order accurate, above interpolating functions are bilinear and

then there is no'loss of accuracy in -eplacing biquadratic functions of the variables u and v
the derivatives by differences. Therefore which are sonetimes referred to as isopararetric
the use of ithis interpolation forfula woul coordinates. Bilinear and higher-order inter-
give consistent approximations of first polation on the physical variables x and y is

dcrivatives. Clearly, one could also construct generally not feasible unless the cell sides are

an approximation of a quadratic Taylor polynonial. aligned with the coordinate axes.

However, the consistency of the second deriva- Partly due to the need for an iterative

tive approAirmatiors cannot be guaranteed unless r aetdi dete the nee po lati ve
the local truncation error in the linite- coefficients,eit nas decided that interpolation
difference equations exceeds two. Therefore, if
a second-order algo'rithm is being implemented, on triangular regions would be investigated.

it is not clear that a quadratic polynomial would Such interpolation Is popular In finite-e'enent

give better results than a linear polynomial, analysis, and it can be readily adapted to the
present problem. If r0 belongs to a grid cell

The next interpolation formula does not C, then either diagonal of C determ.ines a tri-

re;,.ire the nu.--erical approximation of deriva- angular region containing ro. Select one of these

tives., Let ro telong to a grid cell C of H triangular regions and let its vertices be de-

with vertices s ,ens . There exists a noted as sil s2' s 3 In this case, the three

unique bilinear I *pping of the unit square onto equations in (6) determine the coefficients
the cell C. The point r must be the image of a. of the linear I..'erpolating formula (5).
sc~e point in0 the unit Stare SO that •This is referred to as linear interpclation

since it is equivalent to interpolating by a
linear function of x and y with values given

o-(l-u)(lv)sa + u(l-v)s '1) u s, and s. A quadratic interpolation

can e truct d from tr
for 0 < u, v < 1. Since the coordinates of all vertices of a triangular region and three points

points are known, this system can be solved along the sides.' Such a configuration arises

explicitly for u and v. If f is also assumed if the grid points of H are selected as in this

to be a bilinear function of u and v, then figure.

fkro)=+l-u)(l-v)f(s) +,u(l-v)f(s+) v(l-u)f, 41,ý

+ uvf(s 3 ). (8) s2

This interp;lation formula satisfies (6). This
sche7.e can also be generalized to construct 5
interpolation for-nulas of arbitrary order. The
proce.ljre for biquadratic interpolation will
be briefly described. Let Q be the union of Again the coefficients of the interpolation
four grid cells containing r . There exists a formula are solutions of a linear systeý of
unique biquadratic mapping o9 the unit square equations, namely, the equations in (6) and (7).
such that the points (u, v) where u-O, 1/2. • Then the interpolated value is obtained by using
1, v=O. 1/2, 1, map to the vertices of Q. Now these coefficients in (5).
the coordirates of the point in the unit square
which has r as its image can be found by solving So far only accuracy considerations have
a system of two biquadratic equations, been investigated. When solving elliptic
Unfortunately, these equations would be difficult and parabolic equations, iterative ccn.ergence
to solve directlv. In the examples which and stability are also of interest. If only the
follow, these equations were solved numerically interpolation formula (5) is considered, con-
using Ne-ton's iteration method. Once the vergence a.nd stability would be guaranteed if

11-4



vt _efCficicnts are no ~tv. Tris wc~jo eliptic cylinder .ere -cdfIc111
tnerefcre be a desirable cCn,-t1.On alt"h;.g;n tne tý.nrary 4alue pr.lef-'
cE~rt~ir'y not r':essary. 'Tre linear Arl bi-
lirear are the only inter;olition formulas
with n~r-ne,;.ti~e c.-e~fic~ents.. t car. also pA + P * 0 in the irterior
be noted t~at the c:.lver-,ente or stabil1ity of
t~e f-.'ni te-Ji ffvrence al.ýrl thm i,.ld be lest- t~ * 0 on the ellipse3

afe-e if t,,e~e ere sufficient os.erlap of xatteo:rbun.y
gr'ds so that all the s are Interior grid pointatthsutr ono
of H. This Is be-ause 411 the f's ) values
would be updated when the Irnte-po'.Itior procedure was solved for tie regilon in NQ~re 2. Note
-as irple7<ntedý that only half-cells are di-epic-ted at the oý,ter

boundary where wirichiet 'bnurcary conditicns are

E~amolesimpo-sed at cell centers. 'The variation of
~~~~iora ~amlesthe co~r;:ted surface potential along the ellipse

The ;rctlle-s considcred here are, fo)r the was in aq-eeý-.ert with the thcoretfcal results.
mo s:t part, sin-;'ie odlprctl.;-ss here an ' ':wever, t~he solution aTpeared to be translated

exact sclution is kr.;w n. Fen';c. the acc~racy by a sm-all constant tterm. This was traced

of the various te:hni .q..es dlscussed in the pre- to a larger thanexpected error In the coarse
vinis sectfons can be ccae.The p~sclgrid region near the ou.ter bo~riary. Th e error

rec-saeaoqit iplredbu tphy do at the outer boundary was suttnac'ed fromi
rgý4tnt arealso uiateo~ sprotle, b Itnheyen do the nu~nerical solution and the res-ultlng surface
-cerit copex ccv-.mfitationsl.olr ihrn potential was co.rpared with the theoretical

'moe cr'pe~ onfgurtios.solution. The absolute error In the surface

The al~anta-6s of the cell-centered finite potential is plotted in Fiure 3 be;lnnirg with

vc1  .' mi~td in the solutio.n of Prctleý-.s on toe vertex at x-O and erdirg at the vertex
r-ý4cns with special points has already bEen x1l where the sllngularity occurs. r-,r the
disrcsed. 'kent literatare cortains many ninloer of grid points which were used, one Ti.
a 'iicattions of the -.ethod to the solution of expect more accurate results. This error was

~. n 'c Lrservation laws. In the' case of ' partially due to the large error at the o uter
1o-ie celte 1.dca ~ob bou.ndary which needs further I r.estlgation.

aled In a tnitfrw rd ,nner to the The co-p,ýed soluticn was also not dlefined on'
Sjjtiorn of ,arabolic ano elliptic equations t~he surface and thus a linear e~trapclation

tv osin- *,e for= -ad/t-a.:Lard dlffer,-nnes -. ic of 'interior values was uSed to obtain the
.wr T-ntonp earlier. A se.co)d-order a.,- nuria values which were. conpa red with the

r:7a i'n s .o--nirne- by si1::sin; tre act,.ai solution. A furt'-er sourCe of error
d-,rec-izn o' differencing In tte '!,.o differerce was the fact that the: free strea7 boý nd-ýary

uzert~os w johrus beap o tooe~-at an conditicn -as applled only one and a halif crord
n;eatý- ofis %st ed-dr ap ',den'ale lenagths frcis the ellipse.

2a:-Ai7'~ti-,'o a sc.n-eg
Inthe results of this report, the four The coirputaton of the potential function

~cssbledifeene qot~rtsobtine byallfor flco about the same elliptic cylinder was
cosr~t~nsof for-ý.ard and bacO-ard d"Ifferencing also tarried Out using the traditioral finite-

t ba e 'ire ae~a~ed to yleld a se- -cnd-_order dfeec ehd on O trtc ehd
d-.ffe'en-ce exrressioýn which wcold also reflects dfeec ehd on O trtv ehd
any S.-ietry In the grid. It mas observed are frequently used for solving ellptic
that cors`iderttzle simplification in impcsing equations on corposite grids. That r.ýethod was

b,ýý-Iay c-di''_-s rsuitd i ony tw ofthe used in the above finite-volumne calculations
bodalýry-ee r c i i,-ns result eraed if anl twoo he, and could also be used here. Ho-ever, it was

-' rdary. If ;N-.orn boundary coro--itions -ere de-Ided instead to use an ANI method. This

S.'ec~fled, diffý%'cing In the d~rectior ex- exa-ple illustrates the special treatý,-nt needed
tenr o he e;orwaspefo-dony In h at sirigular points and the successful application

sý::d apliaý!In o týe difernceope-t~rand of implicit updating along bou_.dary curves in
s.n-d in tlicontation of the dffirsnc d~eriativean rectangular s'b-reg40ns. In this cý_se there is

W Cn irichlIet b:ýundary cond",tions were irnpcsec. Only one cc.;mputational rectangle, but there

Cifferenclrg I ,n th~e exterior direction was per- arE two re -entrant bo~ndŽ ry se'; ';ents ý icor map
f-r'.ed only on the first applicatlon of the to the same Interior grid line.
diffe-encýe operitor. This cconverienc-e elimirates Lpaese'a~ se
the need for false boundary points are per'rits Lalc' eq.ao, aswell as othe

direc, suýbstitution of either Clrichlet or elliptic eqyatlons, can. be transfo7nred to c~r-
u~n. dta ntothedif~erncee~utlos.putational variables and. written, in the forT-

Trne finite volm-rp r ýo hs been used a +bp +Cp dp +epi 0 ()
to so've Laplace's e;uation in a region about + En fic nn+dP C = ()
an ellipse. The grid which was used is sho-n
ir FI;,,re 2. A sIngularity occ.,rs at a vertex
01 tne ellipse where three grid lires intersect
at a single -point. In order to c:.'-pare with a
kn:c-n solution, the bcoundary values of the
porertial function for ideal flýow about an

JI- 5



The T,*hcthd rnic was used to solve this In this particular case, all the urkn-wnSof a
e,.at-n is the Dougllas-Pacrford algzi-ithm system lie on nzconstant lines. However, the

-io.after d!ivtmves are rp~laced by orientation of tht, coordinate line does change
diffe-encp.s, a be written as (1) at the cut. In a more gereial case. some of the

can 12)unknowns could follco ncorstant lines in one
r -cs~- =r~p(I) ap (1), ( o 1) 4- p i) 5region and Ciconstant lir~e,, In ancther sub-rrn ep* -p r p 'd region. df coirse these samre ccncepts would

r a 1.1 (1+) *- ~apply to any of the other fractional stepr . ap* rp P*-a I-d~) algorithms such as approximate factorizationi C and locally ore dirensional splitting.
(13)

The numerical'solution of (10) using the
ese q..tics wre aprcriaelyiterative algorithm in (12) and (13) wasC" c ars thes orý.daryn toerelc aprpithel cor~ared with the exact solution. and theat~m Vb . bc~a r cod tion infec (1).heps absolute error in the surface potential is!-ý__nnbýýdar coditins n (0).Suposeplotted in Figure 4. It is interesting toa.ýd ''e c tairlregion is the unit sq.are note that there was not a loss In accuracy

-1 tr Ve of t,!he ellipse lying al,)ng theatteoerbudy. Trfrth fit-
-Dc ýr -na e line. The grid is similar a h ue -udr.Teeoe h iie

to ~jre2 SiroeDirchle bonday coditons difference solution was not subJecteo to thegrFý,r 2 inedir~ltb~n ycniin same type of translation that was observed-are i-; nsec! at grdpoints, no hal~f cells are with the finite-volume solution. The similarities-.e! at th.e outer boundary. The coinputations in the behavior of the nurerical solution at
in (IZ; and (13) can be Carried ouit in the the two vertices of the ellipse illustrate

&i.mgsteps : the successful incorporation of a local Ccoordi-
(i) Cilculate p* on the ellipse. nate system at the singularity. There was

only a slightly larger error at the singular
(4i) U , in; the value of p* at the singul'ar vertex.

point, calculate p* on the re-en-trantSerlinrpato sccsfrcouig
segr~ent of the t=rj cocrdirs line.a ineplto.ce-, o optn

on overlappingq grids have alr'Edy teen discussed.
The objective now is to comp.are the acciracy(i) ý_'cate p* on the re-arning ~ o hs cee. Tefloigeaoeas

c...rstanl ccýrd,,nate lines.ofteeseme.Te olwýgex`al lo
.compares the solutions for overlappIng grids

''v ~'u~te (i.l ~ ll co~s~ntwith one co:np,-,ted on a co.mpos'te grid with
coýdirite lines ,ohjcf intersect the cntinuously joined grids. Tefn~o
eliPe at an, po:int otner than the i.oq (X2 +y2
s lj'ar ;oin .t. U(X, y)

1f) 1log (200)
( Calcdlate pi4+ on the union of

all pairs ofnzr con~stant lines which satisfies Laplace's equation everywhere except
inter,,ht at the sa7re interior at the origin. This function was approximated
point of vie re-entrant se;n-ent. by sclving Laplace's equation on the region

covered by the overlapping grid in Figujre 5.
(vi) 'Using a local coordinate systemn, the The exact boujndary, values were used . Since

va~ I f~il at the singular the Interior boindary component was taken toalý.eof p0+1)be the unit circle, the solution assumed thep0 n t is c.ptdexplicitly. value 1 on the interior boundary and decreased

rim lCa-u~ate th.e ,_.,elS Of p(i+l) to nearly zero at the outer 'boundary. The
on t'.e *-.o, =i- stent lines which Md~u absolute error in the nur-,rical
intrse'-: t ý.e sirn.u~ar point, slution is contained in Table 1. Since the

linear and bilinear interpolation form~ulas
Stqea *' c~fca- Ds of t"e usual AICI scheme can be applied with a smaller overlap region,

na:ý, ar de to ',h re-ent-ant boundary. the error in using these form~uas with a
mc ~.- '-a 5'5t~wS s~e ,,enone cell overlap is also included. This probler.

* ~it -"orin I). Thewas also solved on the grid In Figure 6 whichCL~t+he ~a'r.!W in(I).Theh~a s approximately the same size grid cells.~- in ý') ccntalrns -rý-rns on, aboave, The error In that sol-jtion is also included
rein Te fzre 'ath cute in the pt'ysicoal in Table 1. All the computed solutions had

reg~7irn (vrefwre thei s-ice as tare trdasoa about the same order of accuracy. The second-
t.Cs in (iv) was (vii). aige 35 dlarge as order interpolation formulas gave better results

Sythc - nf this) type *vii). be toriaonainth in each case, although the difference in the
useZ of tCý sc tyear won l bo-oie cgorins The error was mini-mal when the same overlap was

S~s'.-- in ger-eral, could contain unknownsusd
fr-j. se er-al different Stre,34ons.

_71,075



A more interesting comparison arises from Conclusions
the function

Most of the currently available algorithms

. ) sfor the numerical solution of partial differentialuX + y- equations can be implemented on composite grid
systems. Local coordinate systems may be re-

which is the solution of the Poisson equIation; quired at special points where the usual
hfdifferencing techniques cannot be applied.

Finite volume formulations are easier to derive
on composite grids, and in principle, may,

u u -+ (xUy) , be derived for partial differential equations
xx yy of all types. When using ADI-type algorithms,

the rmin problem is to arrange the order of
the computational steps so that all the

where # is the appropriate source term. unknowns at each level are updated simultaneously.
The growth of the higher-order derivatives results Except when using ADI schemes, the overlapping
in a larger truncation error in this example. of grids is an alternative to the more c.c-.non
The maximum absolute error in the numerical grid constrrction procedure where gri! lines
solution for some of the overlap cases in the continue smoothly from one subregion into the
previous example is listed in Table 2. For next. The accuracy of numerical solutions
this function the quadratic Taylor polynomial computed on overlapping grids is dependent
gave poorer results than the linear Taylor on both the interpolation formula and the
polynomial. Thus we have a case where the extent of the overlap. Several interpolation
ni-rerical approximation of second-order formulas were analyzed. In the solution
derivatives was unreliable. The biquadratic of model problems, the correct choice of the
interpolation formula, which does not require Interpolation formula could reduce the error
numerical differentiation, was clearly superior by a factor of two.
to bilinear interpolation.

All of these results were computed using a References
point SOR iterative method. The convergence
rate was considerably greater with an overlap 1. P. E. Rubbert 'and K. 0. Lee, Patched
of two grid cells than with a one grid cell Coordinate Systems, in Numerical Grid
overlap. These results are thus consistent Generation (J. F. Thompson, E-d JT'
with previously reported observations on the sE-Iievieri'North-Holland, New York, 1982.
relatlon bet-een the extent of oerlap and the
conrergen'ce and accuracy of the numerical 2. A. Roberts, Automatic Topology Generation
solution. 7 A slightly faster rate of convergence and Generalized 8-Spline Mapping, in
was also noted when using those interpolation Numerical Grid Generation (J. F. Thcmpson,
formnulas with positive coefficients, namely, Ed.), Elsevier/North-H-cTand, New York,
linear and billnear. 1982.

The most difficult task in applying 3. G. Starius, Cornposite Mesh Difference
overlapping grids is to partition each sub- Methods for Elliptic Boundary Value
region grid into three sets; those points where Problems, Numer. Math. 28 (1977)
the difference equation is applied, the points 243-258.
where the interpolation formula is used, and any
points which are not used in the numerical 4. B. Kreiss, Construction of a Curvilinear
solution of the problem. The code which was Grid, SIAM J. Sod. Stat. Comnuut. 4 (1983)
written to compute the examples of this report 270-279.
attet;ted to autom.ate this procedure as far as
possible. In the process several different 5. E. H. Atta and J. Vadyak, A Grid Interfacing
geometric configurations were considered. The Zonal Algorithm for Three-Dimensional
solution of Laplace's equation with values 0 Transonic Flows about Aircraft Configurations,
and I on different boindary components was AIAM Paper No. 82-1017, June 1982.
co-,puted to test the overlap algorithm. Three
of those configuratlons are included since 6. J. F. Thompson, General Curvilinear
they are representative of cases, where over- Coordinate Systems, in Numerical Grid
lapping grids would be appropriate. Figure Generation (J. F. Thompson, Ed.),
7 typifies a body in a channel or tunnel. V-sevier/North-Holland, New York, 1982.
Figure 8 is representative of problems involving
flow about multiple bodies. Figure 9 indicates 7. E. H. Atta, Component-Adaptive Grid
a case where overlapping grids can be used to Interfacing. AIAA Paper No. 81-0382.
avoid the large grid line curvature that would January, 1981.
result if a single grid were constructed.
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Iriterp Iolatiun Formula NO. Cells Max. Absolute
Overlap Error

Linear on triangles 1 0.00716
Bilinear 1 0.00295
Linear on triangles 2 0.00303
Bilinear 2 0.00158WHMI/II
Linear Taylor poly. 2 0.00273
Quadratic on tri. 2 0.00200
Biquadratic 2 0.00156
quadratic Taylor poly. 2 0.00211 _

Continuously joined subgrids 0.00131

Table 1, grror in the approximation of u(x.y)
I-'Iog(x +y')/log(200) by solving Laplace' sI
equation.IIII

Interpolation Formula No. Cells Max. Absol-ute
Overlap_ Error

Bilinear 2 0.05515
Linear Taylor poly. 20.21
Biquadratic 2 0.02756
Quadratic 'Taylor poly. 2 0.03,8

Tab le.2. Erjor in the approximation of u(x~y)
sin(Zw2 l+y )by solving Poissons equation.

~ Figure ie. Grid for comiputing Ideal flow about an
% - elliptic cylind er; complete grid and closeup near

the singular point.
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cons isting of a tw.o cell wide strip from each
subregion.

Figure 7. Grid and isotherms for the solution of
Laplace's equation with different constant values
on the two boundary components.



Figure 9. Grid arnd isotherms for the solution of
Laplace's equation with two, different constant
values on the boundary.

Figure 8. Grid and isotherms for the solution of
Lapl ace's equation with one constant value on the
circles with corrrron center and another constant
value on the other circle.
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APPENDIX 2

Reference 3

Numerical Grid Generation: Foundations and Applications

"Numerical Implementation"

--- relevant excerpt from Chapter IV---

by

J.F. Thompson, Z.U.A. Warsi, C.W. Mastin

this section by

R.V. McConnaughey



2. Discrete Representation of Derivatives

Approximate values of the spatial derivatives of a

function which appear in the transformed equations may be

found at a given point in terms of the function's value at

that point and at neighboring points. As noted earlier,

with the problem in the transformed space, only uniform

square grids need be considered, hence the standard forms

for difference representation of derivatives may be used.

For example, in two dimensions the first, second, and mixed

partials with respect to the curvilinear coordinates g and n'

are ordinarily represented at an interior point (i,j) by

finite differences or finite-volume expressions which con-

tain function values at no more than the nine points shown

below.

i-1 I i+1
o 0 a J+1

• 0 al-i

This centered, nine-point "computational molecule" is

usually preferred because of the associated difference

representations which are symmetry- preserving and second-

order accurate. Examples of finite-difference approxima-

tions of this type are:

(f ij= (f i+ f ) (11a)2 i1'J - i-,J

(fn)ij L(fi - fi ) (11b)f J 2 i,j+1 i,j-1Cb

(f =)ij fi+1,j -
2 fij + fi--,j (12a)
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S (nn))jj fj,j+ - 2fij + fi,j- 1  (12b)

(f J (fi+lj÷l - fi÷1 ,j-1 - fi-l,j+1  + fi-l,j-1) (13)

Other second-order approximations of the mixed partial

(f ,)ij which use the nine-point molecule are:

2 (ft+l,J+ - fi+1,J f + 2fj
2 i1J i'jl1 2 ij

f fiJ-1 - fi-i,j + fi-lJ-1) (14)

and

2( i+i,j fi+1 ,j-+1 i,J+ 2f

+ f i'j1 - fi-l,J+* + fi-1,J) (15)

It is clear that at boundary points, where at. most

first partials must be represented, the computational mole-

cule cannot be centered relative to the direction of the

,coordinate Ea which is constant on the boundary (see diagram

below).

n+2-

n+l - o

n
m -1 m M+1.
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There a one-sided difference must be used to approximate

fý * The second-order formula appropriate for the boundary

point indicated above is

S(f Cd~mn = •2 1 fmn+2 + 4fmn+- 3fmtn)

Any standard text on the subject of finite-difference meth-

ods will provide formulas of alternate order and/or based on

other computational molecules.

A finite-volume approach uses function values at

grid-cell centers and approximates derivatives at a cell

center by line (surface in 3D) integrals about the cell

boundary which are equivalent to averages over the cell. In

particular, the identity

1rv I f dT f 3.do)

is used, where V is the volume of D. Thus, if a function is

assumed constant along a grid-cell face, it is a simple

matter to evaluate the line integral in (16) when D is a

grid cell in transformed space. In terms of the two-

dimensional grid:

, j~ l! * I * ,1

I I I I

I *I I "
I I

i-1 i i+1
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this approach gives

(f f - f (17a)

2 2

(fnJ n if 1,J+- f(,j-(17b)

2 2

With an edge value approximatedýas the average of the center

values of the two cells sharing that face, e.g.

f +1,J (fi+1 ,J + fij) (18)
2

the values given by (17) are equivalent to ordinary central

differences (cf. Eq. (11)) and hence are second-order ac-

curate. The first partials of f may also be assumed con-

stant along each cell edge in order to derive from (16) the

following approximations of second and mixed partials at a

cell center:

(ft )ij " i, -((YO i - 2, (19a)

2 2

(f ýn)iJ Y ()iJ+1-(f ) i,j-1- (19b)

2 2
(n& )ij -(fn~+ (fn)1(9)

n-½,jn('19o

(niJ= (fni,,j*'- (fn ..1j- (19d)

2. 2

Now, however, the averaging scheme in (18) cannot be used to

approximate edge values of the derivatives without 'going

outside the nine-point computational molecule shown above.

Instead, a second-order accurate representation can be ob-

tained on the nine-point molecule using a forward (backward)

144
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assignment for the center value of a function and a backward

(forward) assignment for the first partial on a given side.

There are four possible schemes of this type. One uses

+•,j =fij, fi 1j fi (20)

2 * 2

to evaluate 7f(ý,n) at all cell centers according to (17),

and then uses

gi!J"giJ 9 lJ• gij (where g -f• or f) (21)

2 2

to evaluate the second and mixed partials given in (19).

This method is equivalent to a finite-difference scheme

which approximates first partials by backward differences of

the function, and then approximates second and mixed par-

tials by forward differences of the first partials.

Consequently, the second derivatives which result are equal

to those givenin Eq. (12), while the resulting representa-

tions of the two mixed partials are unequal and only first-

order accurate. If the two mixed partials.are averaged,

however, the second-order expression (15) is recovered.

This is also true of the reverse scheme:

f--j 1 i iJ -- f 1 fiJ (22)
2 2

g , gJ' :g- +- gij (g " f. or f) (23)-- gi i,j --+
2 2

Expressions (12) and (14) are similarly recovered from the
.other two possibilities (Eq. 20a, 21a, 22b, and 23b'or Eq.

20b, 21b, 22a, and 23a). The symmetry-preserving form (13)

can be recovered by averaging the averaged mixed partial ob-

tained in one of the first two schemes mentioned and that

obtained in one of the remaining two.
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The manner in which boundary conditions are treated

in a finite volume approach depends on the type of condi-

tions imposed. When Dirichlet conditions are prescribed, it

is advantageous to treat the boundary as the center line

(plane in three-dimensions) of a row of cells straddling the

boundary. The centers of these cells then fall on the phys-

ical boundary where the function values are known. When

Neumann or mixed conditions are given, however, ,the boundary

is best treated as coincident with cell faces.
Suppose, for example, that boundary condition (9)'is

to be imposed at the cell edge n-J-l/ 2 indicated below.

+1/2

j++1/2

The edge value of fi'J-1/2 cannot be approximated by the

usual averaging scheme (illustrated by Eq. (18))'since there

is no cell center at n-j-1. It can, however, be found in

terms of neighboring cell-centered function values by using

boundary condition (9) in connection with the

forward/backward scheme used to approximate second deriva-

tives at the cell centers.

Considering the' scheme represented by Eq. (20) and

(21), the values of f along the cell edges shown above 'are:

i- ,j " i-1,j, i -÷ fij

2 2
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f f ij, f -,undetermined- xi2 2

It follows from Eq. (17) that the first partials of f at the

cell center are

(f )J fJ - f -lj (f ~ij ",fi "xi

Eq. (21a,b) then give f and if along the cell edges enclos-
ing (i,j) in terms of fif-.,j fi-1 1j+1  fij! fij÷f 1 ,j+1 f ,jt

xi and xi+,. In particular,

" ~~~(f~l~- fi-f-lj (fni_! fij-x

f. I~ j _i

S22

Substitution of these expressions into boundary condition

S(9) then determines the edge value xi as

x -f

S. • 4 Eg2 (fij -fi- ,j + g fii])
m

In this way, f, and hence f. and fn' are found on all

"boundary-cell edges in terms of cell-centered values of f.

.- The finite-difference and finite-volume techniques

* described thus far are appropriate for representing all

derivatives with respect to the curvilinear coordinates,
even those appearing in the metric quantities. In fact, as

it is shown later in this chapter and in chapter V, the met-
ric quantities should be represented numerically even when

analytical expressions are available. One might have, for
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example',

(xlijk = .(xi+1,j,k - xi-l,j,k) (24)

3. Scecial Points

Many of the expressions given in the previous section

break down at'so-called "special points" in the field where

special attention is required in the approximation of deriv-

atives. These points comtonly arise when geometriaally

complicated physical domains are involved. As indicated in

Chapter II, special points can occur on the domain boundary

and on interfaces between subregions of a composite curvi-

linear coordinate system. They may be recognized in physi-

cal space as those interior points having a nonstandard

number of immediate'neighbors or, equivalently, those points

which are vertices, or the center, of a cell with either a

nonstandard number of faces or a vertex shared by a nonstan-

dard number of, other cells. (In'two dimensional domains,

ordinary interior points have eight immediate neighbors

[refer to figure on p. 141]; standard two-dimensional in-

terior grid cells have four sides and share each vertex with

three other cells [see diagram on p. 143].) Boundary points

are not special unless they are vertex-centered and have a

.nons".andard n-=- of. im.ediate, neighbors (other than f'ive

in two dimensions see diagram on p. 142 for an ordinary

boundary point) and then are special only when their asso-

ciated boundary conditions contain spatial derivatives..

Some examples of special'cell-centered points and special

vertex-centered points are shown below.

148
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.\ \\.

-- Interface
between subregions--...

When a finite-difference formulation is used, the

usual approach, as described in Section 2, can be followed

at a special point P if the transformed equations and

differ.nce approximations at that point are rephrased in

terms of suitable local coordinates. The local 'system is

chosen so as to orient and label only the surrounding points

to be used in the needed difference expressipns. Choices

aporopriate to various special points are listed in Tables

1, 2, and 3.

The difficulties encountered at special points in a

finite-volume approach are clearly seen by considering the

image in the transformed plane. The first pair of diagrams

belw, for' example, shows that at centers cf cells having

the usual number of faces but sharing, a vertex with a non-

standard rnumber of cells, such difficulties amount to mere

bookkeepinr complications when only first partials must be

approximated. Equations (17) and (18) still Apply, but the

indices must be defined to ctrrectly relate the cell centers

on the two sides of an interface. The following diagrams

149
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Oiagram of Characterization of Poin* in local
special point associated special cell j computational molecule

V1if
7.. (a) Points 1-9, or

/8 I_ ," Cell center is (b) points 1, 2, 4-6,,
equivalent to special 8, g and use the

1 16> 2 point 6 in category corresponding
IV. antisyrmetric, 2nd-

order difference for
the cross derivative.

Ix

(a) Points 3-10 and I
6 ,' /or 2, or

./ / Cell center is

equivalent to special (b) 3-7, 9, 10 and use
4 point S in category corresponding

9 2 V. antisyrnmetric, 2nd-

order difference for
cross derivative.

IX

S '~ //

"\8 / Cell center is
"I~ 1 1 equi-alent to specialsaes x
--- ! ,point 5 in category

0 2 VI.
1 2%

11. (i) At special vertex

/ 3: Use points 1-8 and
13 Cell center is 9 or 10.

~ / equivalent to special
10 point 6 in category (ii) Treat special

15 VII. vertex 9 the same asspecial vertex 4 in

category IX.

Table 3'. Special vertex-centered interior points
associated with subregions joined between grid lines.
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also illustrate the breakdown at all special cell-centered

points of thie previously-described finite-volume schemes for

"approximating second and mixed partial derivatives. This is

because the forward/backward crientation of the coordinate

system in one segment cannot be consistently followed across

the interface adjacent to, or intersecting, the special

points. The second pair of diagrams displays the additional

complication associated with grid cells having a nonstandard

number of edges. Such a cell can occur on an interface be-

tween segments of a composite grid which are joined between

grid lines. When the segments are transformed to their re-

spective images, the separate pieces of the special grid

cell cannot be joined without distorting them. It is thus

unclear how to evaluate the volume and the outward normals

of that transformed cell in order to use identity (16) in

the transformed plane. Consequently, at special points of

this type and at all special points where second derivatives

"must be approximated, the governing equations are best

represented locally in the physical plane where such ambi-

"guities do not exist.

subregion A'
subregion A

•$A

subregion B subregion B'

subregion5C'subregieniCn C'

'ii'. q ,subregion 
0 

su breg ion D'
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Treatment in physical space involves approximation of

the original equations by means of identity (16). Thus, for

a two-dimensional N-sided cell of area A with cartesian cen-

troid P - (pl,P 2 ), vertices Vi-(vj ,v2) i-1,2,...,N, and

edges si joining Yi and Vi1 (VN÷1-vl) along which a func-

tion f and its first partial derivatives are constant, this

approach gives

Nfp A- fs (vi 1 -v)x 2 2

N

A- 1  -s(v- i+1

xx. x 2 v)

fp .AN 1 fS (vi- i+1)fYy " , A- i• fY

where the superscripts on f and its derivatives indicate the

point or face of evaluation. As in the previous section, an

obvious way to approximate fs is to average the center val-

ues of the two cells sharing edge si. This same averagingi . i
scheme cannot be -repeated to apprcximate fx , and fst,

however, without rejecting the recommended strategy of

avoiding use of values at points which are not immediate

neighbors of the point at which a quantity is being evalu-

ated. Instead, we propose the averaging technique:

fS 1(fV V
x "tx +fx )

fs -(fI .f )
y Y +1
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where the vertex values are obtained by applying identity

"(16) to auxiliary cells formed by joining the midpoints of

the edges of each cell to the cell center. To make this

more precise, let V be a vertex common to Q cells and label

the cell faces emanating from V as ki with midpoints

1 2

Then if pi-(p',p') is the center of the cell having edges k'

and ki÷I, and if

f f along M Pi and PIMi÷I

the first partial derivatives of f at V may be approximated

by

V A- fPi(mi+I m

y V A9 p (mi1 ma+1)
iv1

where A is the area of the 2Q-faced auxiliary cell MY PM 2P2

... MQPQMI indicated in the following diagram.

V

I-I
0
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This technique is applicable 
to all grid cell centers;

however, it is recommended for 
use only at points where the

methods developed in section 2 
break down, since the differ-

ence representations associated with those methods are

simpler.
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